Mercury or silver atoms bridging trinuclear titanium imido-nitrido systems \dagger

Avelino Martín, Noelia Martínez-Espada, Miguel Mena, Marta E. G. Mosquera, Adrián Pérez-Redondo and Carlos Yélamos*

Received (in Cambridge, UK) 28th August 2008, Accepted 14th October 2008
First published as an Advance Article on the web 11th November 2008
DOI: 10.1039/b814982h

The imido-nitrido complex $\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mu-\mathrm{NH})\right\}_{3}\left(\mu_{3}-\mathrm{N}\right)\right]$ entraps mercury(II) or silver(I) halides MX_{n} to give cube-type adducts $\left[\mathrm{X}_{n} \mathrm{M}\left\{\left(\mu_{3}-\mathrm{NH}\right)_{3} \mathrm{Ti}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}\left(\mu_{3}-\mathrm{N}\right)\right\}\right.$] which react with alkali metal bis(trimethylsilyl)amide reagents to afford $\left[\mathrm{M}_{2}\left\{\left(\mu_{3}-\mathrm{N}\right)_{n}\left(\mu_{3}-\mathrm{NH}\right)_{2-n} \mathrm{Ti}_{3}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}(\mu-\mathrm{NH})\left(\mu_{3}-\mathrm{N}\right)\right\}_{2}\right](\mathrm{M}=$ $\mathbf{H g}, \boldsymbol{n}=\mathbf{2} ; \mathbf{M}=\mathbf{A g}, \boldsymbol{n}=1)$ where two $\left[\mathrm{Ti}_{3} \mathrm{~N}_{4}\right]$ cores are linked by two mercury or silver atoms in a linear geometry.

While an extensive chemistry has been developed with mononuclear transition metal complexes bearing nitrido ligands as a terminal functionality, $\mathbf{M} \equiv \mathrm{N},{ }^{1}$ the study of polynuclear derivatives containing bridging nitrido ligands remains comparatively scarce. ${ }^{2}$ This is mainly a result of the difficult characterization of their singular structures and, maybe more important, the lack of a systematic way of syntheses. Polynuclear nitrido complexes might be of interest as building blocks in the synthesis of metal nitride materials. ${ }^{3}$ Furthermore, species with μ_{n}-nitrido groups are proposed as intermediates in dinitrogen fixation and activation, ${ }^{4,5}$ and new structural and electronic data on molecular systems may provide insights into those processes. For instance, new structural data of the FeMo-cofactor of nitrogenase have prompted recent interest in iron nitride clusters of high nuclearity as potential models of the active site. ${ }^{4,6}$ Over the last few years we have been involved in the development of a family of heterometallic nitrido complexes with new structural and bonding features. The rational synthesis of these polynuclear systems is based on the incorporation of metal complexes at the $\mu-\mathrm{NH}$ basal imido groups of the trinuclear titanium derivative $\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mu-\mathrm{NH})\right\}_{3}\left(\mu_{3}-\mathrm{N}\right)\right]^{7}$ (1) and posterior $\mathrm{N}-\mathrm{H}$ activation generating μ_{3} - or μ_{4}-nitrido ligands. ${ }^{8}$ The existence of the $\mu_{3}-\mathrm{N}$ nitrido apical group confers a rigid character to $\mathbf{1}$ and the structure of the resultant nitrido complexes depends on the geometrical preferences of the incorporated metal. Here we report the preliminary results on the coordination of $\mathbf{1}$ to mercury(II) or silver(I) halides and the utility of these molecular adducts to prepare nitrido complexes with linear mercury or silver atoms bridging two trinuclear titanium systems.

[^0]The synthetic chemistry is outlined in Scheme 1. Treatment of $\mathbf{1}$ with one equivalent of mercury(II) iodide or silver(I) halide in toluene or dichloromethane at room temperature led to the cube-type adducts $\left[\mathrm{X}_{n} \mathrm{M}\left\{\left(\mu_{3}-\mathrm{NH}\right)_{3} \mathrm{Ti}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}\left(\mu_{3}-\mathrm{N}\right)\right\}\right]$ ($\mathrm{M}=\mathrm{Hg}, n=2, \mathrm{X}=\mathrm{I}(\mathbf{2}) ; \mathrm{M}=\mathrm{Ag}, n=1, \mathrm{X}=\mathrm{Cl}(\mathbf{3})$, I (4)). The analogous reaction of $\mathbf{1}$ with mercury(II) chloride gave an intractable mixture of products, presumably by activation of $\mathrm{Hg}-\mathrm{Cl}$ bonds with generation of reactive HCl . Silver derivatives $\mathbf{3}$ and $\mathbf{4}$ are light sensitive in solution and in the solid-state and their preparation and manipulation were carried out in the absence of light.

Compounds 2-4 were isolated as air-sensitive yellow or orange solids in good yields ($61-78 \%$) which are very soluble in halogenated solvents. The mercury derivative 2 is poorly soluble in hydrocarbon solvents but silver complexes $\mathbf{3}$ and $\mathbf{4}$ exhibit a good solubility in toluene or benzene. Compounds 2-4 were characterized by analytical and spectroscopic methods, as well as by an X-ray crystal structure determination for $\mathbf{3}$. \ddagger IR spectra (KBr) of complexes $\mathbf{2} \mathbf{- 4}$ show two ν_{NH} vibrations, between 3359 and $3286 \mathrm{~cm}^{-1}$, in a range similar to the value determined for $\mathbf{1},{ }^{7 b} 3352 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in chloroform- d_{1} of $\mathbf{2 - 4}$ at room temperature reveal resonance signals for equivalent NH and $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ groups. The NH resonance signals ($\delta=12.36-11.98$) in the ${ }^{1} \mathrm{H}$ NMR spectra are shifted to higher field with respect to that found for $\mathbf{1}(\delta=13.40){ }^{7 b}$ These data suggest a tridentate coordination of the titanium metalloligand to the mercury or silver center and are consistent with a very fast exchange process (2) or a highly symmetrical structure (3 and 4) in

$[\mathrm{Ti}]=\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$

$M=\mathrm{Hg}, \mathrm{X}=\mathrm{I}(\mathbf{2}) ; \mathrm{n}=2$
$M=A g, X=C l(3), I(4) ; n=1$

$$
\begin{aligned}
& M=\operatorname{Hg}(5) ; y=0 \\
& M=A g(6), y=1
\end{aligned}
$$

Scheme 1 Synthesis of titanium-mercury/silver nitrido complexes.

Fig. 1 Crystal structure of complex $\mathbf{3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ (thermal ellipsoids at the 30% probability level). The methyl groups of the pentamethylcyclopentadienyl ligands and the $\mathrm{C}_{7} \mathrm{H}_{8}$ solvent molecules are omitted for clarity. Selected lengths (A) and angles (${ }^{\circ}$): $\mathrm{Ag}(1)-\mathrm{Cl}(1)$ 2.358(2), $\mathrm{Ag}(1)-\mathrm{N}(2) \quad 2.563(6), \quad \mathrm{Ag}(1)-\mathrm{N}(3) \quad 2.387(6), \quad \mathrm{Ag}(1)-\mathrm{N}(4) \quad 2.507(6)$, $\mathrm{N}(2)-\mathrm{Ag}(1)-\mathrm{N}(3) 78.2(2), \mathrm{N}(2)-\mathrm{Ag}(1)-\mathrm{N}(4) 75.7(2), \mathrm{N}(3)-\mathrm{Ag}(1)-\mathrm{N}(4)$ $79.0(2), \quad \mathrm{Cl}(1)-\mathrm{Ag}(1)-\mathrm{N}(2) \quad 121.4(2), \quad \mathrm{Cl}(1)-\mathrm{Ag}(1)-\mathrm{N}(3) \quad 141.0(2)$, $\mathrm{Cl}(1)-\mathrm{Ag}(1)-\mathrm{N}(4)$ 135.6(2).
solution, as observed previously in other metal halide adducts of $1 .{ }^{9}$ The molecular structure of $\mathbf{3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ was determined by an X-ray analysis of crystals grown in a toluene solution at $-25^{\circ} \mathrm{C}$. The solid-state structure reveals a $\left[\mathrm{AgTi}_{3} \mathrm{~N}_{4}\right]$ cube-type core (Fig. 1). The silver atom exhibits a distorted tetrahedral geometry with $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ angles ranging from 75.7(2)-79.0(2) ${ }^{\circ}$ and $\mathrm{N}-\mathrm{Ag}-\mathrm{Cl}$ angles spanning $121.4(2)-141.0(2)^{\circ}$. The $\mathrm{Ag}-\mathrm{Cl}$ bond distance, 2.358(2) \AA A, and the silver-nitrogen bond lengths, $2.387(6)-2.563(6) \AA$, compare well with those found in $\left[\mathrm{Ag}\left([9] \mathrm{aneN}_{2} \mathrm{~S}\right) \mathrm{Cl}\right] .{ }^{10}$ Geometrical parameters of the organometallic ligand are similar to those of the parent compound $\mathbf{1}^{7 a}$

Treatment of the mercury diiodide complex $\mathbf{2}$ with two equivalents of potassium bis(trimethylsilyl)amide in toluene at room temperature led to $\left[\mathrm{Hg}_{2}\left\{\left(\mu_{3}-\mathrm{N}\right)_{2} \mathrm{Ti}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}(\mu-\mathrm{NH})\left(\mu_{3}-\mathrm{N}\right)\right\}_{2}\right]$ (5) in a 45% yield (Scheme 1). The analogous reaction of $\mathbf{2}$ with $\left[\mathrm{Li}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\right]$ produced the formation of $\left[\mathrm{Hg}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\right]^{11}$ and the previously described lithium iodide adduct $\left[\operatorname{ILi}\left\{\left(\mu_{3}-\mathrm{NH}\right)_{3^{-}}\right.\right.$ $\left.\left.\mathrm{Ti}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}\left(\mu_{3}-\mathrm{N}\right)\right\}\right]^{9}$. Similar treatment of the silver chloride complex 3 with one equivalent of lithium bis(trimethylsilyl)amide led to the precipitation of red crystals of complex $\left[\operatorname{Ag}_{2}\left\{\left(\mu_{3}-\mathrm{N}\right)\right.\right.$ -$\left.\left.\left(\mu_{3}-\mathrm{NH}\right) \mathrm{Ti}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}(\mu-\mathrm{NH})\left(\mu_{3}-\mathrm{N}\right)\right\}_{2}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8} \quad\left(6 \cdot \mathrm{C}_{7} \mathrm{H}_{8}\right)$ isolated in a 42% yield after workup.

Compounds 5 and 6 were characterized by analytical and spectroscopic methods, as well as by X-ray crystal structure determinations. \ddagger IR spectra (KBr) reveal one ν_{NH} vibration at $3353 \mathrm{~cm}^{-1}$ (5) and $3369 \mathrm{~cm}^{-1}$ (6). The silver derivative $\mathbf{6}$ is not soluble in common organic solvents precluding its characterization by NMR spectroscopy. In contrast, the mercury complex $\mathbf{5}$ is not soluble in toluene or benzene but exhibits a good solubility in halogenated solvents. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in chloroform- d_{1} at room temperature shows resonance signals for two $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands in a 2:1 ratio and a broad signal for one NH group. The NH resonance signal in the spectrum $(\delta=14.12)$ is shifted to lower field than that found in $\mathbf{1}(\delta=13.40)$, suggesting the absence of coordination of the NH ligand to the mercury center in solution. ${ }^{8 d}$ The NMR data

Fig. 2 Crystal structure of complex 5 (thermal ellipsoids at the 30% probability level). The methyl groups of the pentamethylcyclopentadienyl ligands and hydrogen atoms are omitted for clarity. Selected lengths (\AA) and angles $\left({ }^{\circ}\right): ~ H g(1)-\mathrm{N}(23) \# 1 \quad 2.041(5), \mathrm{Hg}(1)-\mathrm{N}(13)$ 2.038(5), $\mathrm{Ti}(3)-\mathrm{N}(13) 1.925(5), \mathrm{Ti}(3)-\mathrm{N}(23) 1.945(5), \mathrm{Hg}(1) \cdots \mathrm{Hg}(1) \# 1$ $3.335(1), \mathrm{N}(23) \# 1-\mathrm{Hg}(1)-\mathrm{N}(13) 173.0(2), \mathrm{Hg}(1)-\mathrm{N}(13)-\mathrm{Ti}(3)$ 120.6(3), $\mathrm{N}(13)-\mathrm{Ti}(3)-\mathrm{N}(23) \quad 105.7(2), \mathrm{Ti}(3)-\mathrm{N}(23)-\mathrm{Hg}(1) \# 1114.5(2)$. Symmetry transformations used to generate equivalent atoms: \#1-x+2, $-y+2,-z$.
for $\mathbf{5}$ are consistent with the solid-state structure determined by X-ray crystallography (Fig. 2) which is very close to a $C_{2 \mathrm{~h}}$ symmetry. The molecular structure shows two $\left[\mathrm{Ti}_{3} \mathrm{~N}_{4}\right]$ cores connected by two mercury atoms. There is a center of symmetry at the midpoint between the Hg atoms. Each mercury adopts an almost linear geometry ($\left.\mathrm{N}(23) \# 1-\mathrm{Hg}(1)-\mathrm{N}(13) 173.0(2)^{\circ}\right)$ with $\mathrm{Hg}-\mathrm{N}$ bond lengths identical within experimental error, 2.041(5) and 2.038(5) \AA, which are typical of mercury(II) amido derivatives with this arrangement. ${ }^{12}$ The structure of 5 contains a $\left[\mathrm{Hg}_{2} \mathrm{Ti}_{2} \mathrm{~N}_{4}\right]$ eight-membered ring that adopts a chair conformation with two mercury atoms and four $\mu_{3}-\mathrm{N}$ nitrido groups in a plane and the two titanium atoms bent away from the plane. This chair conformation may correspond to the minimization of the steric repulsion of the bulky pentamethylcyclopentadienyl ligands. ${ }^{13}$ The mercury(II)-mercury(II) separation of $3.335(1) \AA$ is slightly shorter than the sum of the van der Waals radii ($3.46-3.50 \AA$), ${ }^{14}$ and could be indicative of metallophilic interaction. ${ }^{15}$ However, the parallel disposition of the L ligands in the $\left(\mathrm{HgL}_{2}\right)_{2}$ fragment suggests the absence of such $\mathrm{Hg}-\mathrm{Hg}$ attraction according to theoretical studies carried out by Pyykkö and Straka. ${ }^{14 b}$ Additionally, the mercury-mercury distance in 5 is longer than that between the nitrido groups $\left(\mathrm{N}(13) \cdots \mathrm{N}(23) 3.086(7) \AA\right.$) within each $\mathrm{Ti}_{3} \mathrm{~N}_{4}$ core (outward angle $\left.\mathrm{N}(23) \# 1-\mathrm{Hg}(1)-\mathrm{N}(13) \quad 187.0^{\circ}\right)$ indicating $\mathrm{Hg}-\mathrm{Hg}$ repulsion.

Complex 6 shows a similar structure to that of 5 (Fig. 3). Molecules of 6 lie on an inversion center in the midpoint between the two silver atoms. Each silver exhibits an almost linear two-coordinate environment ($\mathrm{N}(1) \# 2-\mathrm{Ag}(1)-\mathrm{N}(3)$ 165.1(1) ${ }^{\circ}$) with $\mathrm{Ag}-\mathrm{N}$ bond lengths clearly different, that with the nitrido group, $\mathrm{Ag}(1)-\mathrm{N}(1) \# 22.096(4) \AA$, shorter than that with the dative imido ligand, $\mathrm{Ag}(1)-\mathrm{N}(3) 2.200$ (3) A. Complex 6 contains a $\left[\mathrm{Ag}_{2} \mathrm{Ti}_{2} \mathrm{~N}_{4}\right]$ eight-membered ring that adopts a chair conformation similar to that of $\mathbf{5}$ but now the titanium

Fig. 3 Crystal structure of complex $6 \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ (thermal ellipsoids at the 30% probability level). The pentamethylcyclopentadienyl ligands and the $\mathrm{C}_{7} \mathrm{H}_{8}$ solvent molecule are omitted for clarity. The disorder of the silver atoms is not shown. Selected lengths (\AA) and angles $\left({ }^{\circ}\right)$: $\operatorname{Ag}(1)-\mathrm{N}(1) \# 2$ 2.096(4), $\mathrm{Ag}(1)-\mathrm{N}(3) 2.200(3), \mathrm{Ti}(2) \# 1-\mathrm{N}(3) 1.998(3)$, $\mathrm{Ti}(2) \# 1-\mathrm{N}(1) 1.874(2), \mathrm{Ag}(1) \cdots \mathrm{Ag}(1) \# 22.966(1), \mathrm{N}(1) \# 2-\mathrm{Ag}(1)-\mathrm{N}(3)$ 165.1(1), $\operatorname{Ag}(1)-\mathrm{N}(3)-\mathrm{Ti}(2) \# 1108.5(2), \mathrm{N}(3)-\mathrm{Ti}(2) \# 1-\mathrm{N}(1)$ 106.6(2), $\mathrm{Ti}(2) \# 1-\mathrm{N}(1)-\mathrm{Ag}(1) \# 2$ 131.9(2). Symmetry transformations used to generate equivalent atoms: $\# 1 x, y,-z+1 ; \# 2-x,-y+2,-z+1$.
and $\mu_{3}-\mathrm{NH}$ groups are bent away from the plane containing the $\operatorname{Ag}(1), \operatorname{Ag}(1) \# 2, N(1), N(1) \# 2$ atoms. The $\operatorname{Ag}(1)-\operatorname{Ag}(1) \# 2$ separation of $2.966(1) \AA$ is longer than that in metallic silver $(2.89 \AA)$ but clearly shorter than the sum of the van der Waals radii $(3.44 \AA) .{ }^{16}$ Additionally, the silver-silver distance in 6 is shorter than that between $\mathrm{N}(1)$ and $\mathrm{N}(3), 3.100 \AA$, within each $\mathrm{Ti}_{3} \mathrm{~N}_{4}$ core producing an outward angle $\mathrm{N}(1) \# 2-\mathrm{Ag}(1)-\mathrm{N}(3)$ of $165.1(1)^{\circ}$. Thus, the metal atoms come closer together which could be indicative of metallophilic attraction. ${ }^{17}$ Silver(I) dimers with similar attractive Ag..Ag interactions have demonstrated their ability to act as linking units of polyoxometalate (POM) clusters to construct frameworks of increasing complexity. ${ }^{18}$

In conclusion, we have demonstrated that $\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)-\right.\right.$ $\left.(\mu-\mathrm{NH})\}_{3}\left(\mu_{3}-\mathrm{N}\right)\right]$ acts as a tridentate neutral ligand to silver(I) and mercury(iI) halides to give molecular adducts. Posterior treatment of these complexes with alkali metal amide reagents results in polynuclear nitrido derivatives with $\left[\mathrm{M}_{2} \mathrm{Ti}_{2} \mathrm{~N}_{4}\right]$ eight-membered rings in a chair conformation affording the opportunity to evaluate the existence of $\mathrm{M} \cdots \mathrm{M}$ metallophilic interaction.

We thank the Spanish MEC (CTQ2005-00238), Comunidad de Madrid and the Universidad de Alcalá (CCG06-UAH/ PPQ-0665), and Factoría de Cristalización (CONSOLIDERINGENIO 2010) for financial support of this research. N. M.-E. thanks the MEC for a doctoral fellowship.

Notes and references

\ddagger Crystal data for $3 \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{C}_{44} \mathrm{H}_{64} \mathrm{AgClN}_{4} \mathrm{Ti}_{3}, M=936.01$, triclinic, $a=11.549(3), b=13.123(2), c=17.273(2) \AA \AA, \alpha=75.127(9), \beta=$ $74.609(11), \gamma=70.225(14)^{\circ}, U=2334.6(7) \AA^{3}, T=200(2) \mathrm{K}$, space group $P \overline{1}, Z=2, \mu\left(\mathrm{Mo}_{\mathrm{l}} \mathrm{K}_{\alpha}\right)=0.997 \mathrm{~mm}^{-1}, 49737$ reflections measured, 10490 unique $\left(R_{\mathrm{int}}=0.0538\right)$ which were used in all calculations. $R 1\left(F^{2}\right)=0.097$ (for 5858 reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$) and $w R 2=0.327$ for all data. Crystal data for 5 : $\mathrm{C}_{60} \mathrm{H}_{92} \mathrm{Hg}_{2} \mathrm{~N}_{8} \mathrm{Ti}_{6}$, $M=$ 1613.81, monoclinic, $a=10.977(2), b=20.139(3)$,
$c=14.837(2) \AA, \beta=104.01(2)^{\circ}, U=3182.4(9) \AA^{3}, T=200(2) \mathrm{K}$, space group $P 2_{1} / n, Z=2, \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=5.560 \mathrm{~mm}^{-1}, 72220$ reflections measured, 7307 unique $\left(R_{\mathrm{int}}=0.139\right)$ which were used in all calculations. $R 1\left(F^{2}\right)=0.045$ (for 4781 reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$) and $w R 2=0.097$ for all data. Crystal data for $6 \cdot \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{C}_{67} \mathrm{H}_{102} \mathrm{Ag}_{2} \mathrm{~N}_{8-}$ $\mathrm{Ti}_{6}, M=1522.71$, orthorhombic, $a=14.923(3), b=15.546(3), c=$ $16.496(3) \AA, U=3827.0(2) \AA^{3}, T=200(2) \mathrm{K}$, space group Pnnm, $Z=2, \mu\left(\mathrm{Mo}_{\mathrm{o}}\right)=1.133 \mathrm{~mm}^{-1}, 83765$ reflections measured, 4541 unique $\left(R_{\mathrm{int}}=0.0729\right)$ which were used in all calculations. $R 1\left(F^{2}\right)=$ 0.051 (for 3401 reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$) and w $R 2=0.141$ for all data. CCDC 699910-699912. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b814982h

1 (a) W. A. Nugent and J. M. Mayer, Metal-Ligand Multiple Bonds, Wiley, New York, 1988; (b) R. A. Eikey and M. M. Abu-Omar, Coord. Chem. Rev., 2003, 243, 83-124.
2 (a) K. Dehnicke and J. Strähle, Angew. Chem., Int. Ed. Engl., 1992, 31, 955-978; (b) K. Dehnicke, F. Weller and J. Strähle, Chem. Soc. Rev., 2001, 30, 125-135.
3 The Chemistry of Transition Metal Carbides and Nitrides, ed. S. T. Oyama, Blakie Academic \& Professional, London, 1996.

4 (a) S. C. Lee and R. H. Holm, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3595-3600; (b) S. C. Lee and R. H. Holm, Chem. Rev., 2004, 104, 1135-1157.
5 (a) N. Kuganathan, J. C. Green and H.-J. Himmel, New J. Chem., 2006, 30, 1253-1262; (b) H.-J. Himmel and M. Reiher, Angew. Chem., Int. Ed., 2006, 45, 6264-6288.
6 (a) M. V. Bennet, S. Stoian, E. L. Bominaar, E. Münck and R. H. Holm, J. Am. Chem. Soc., 2005, 127, 12378-12386; (b) M. V. Bennet and R. H. Holm, Angew. Chem., Int. Ed., 2006, 45, 5613-5616.
7 (a) H. W. Roesky, Y. Bai and M. Noltemeyer, Angew. Chem., Int. Ed. Engl., 1989, 28, 754-755; (b) A. Abarca, P. Gómez-Sal, A. Martín, M. Mena, J. M. Poblet and C. Yélamos, Inorg. Chem., 2000, 39, 642-651.
8 (a) A. Abarca, M. V. Galakhov, J. Gracia, A. Martín, M. Mena, J.-M. Poblet, J. P. Sarasa and C. Yélamos, Chem.-Eur. J., 2003, 9, 2337-2346; (b) A. Martín, M. Mena, A. Pérez-Redondo and C. Yélamos, Inorg. Chem., 2004, 43, 2491-2498; (c) A. Martín, N. Martínez-Espada, M. Mena, A. Pérez-Redondo and C. Yélamos, Inorg. Chem., 2006, 45, 6901-6911; (d) M. GarcíaCastro, A. Martín, M. Mena and C. Yélamos, Organometallics, 2007, 26, 408-416.
9 M. García-Castro, J. Gracia, A. Martín, M. Mena, J.-M. Poblet, J. P. Sarasa and C. Yélamos, Chem.-Eur. J., 2005, 11, 1030-1041.
10 U. Heinzel and R. Mattes, Polyhedron, 1992, 11, 597-600.
11 H. Bürger, W. Sawodny and U. Wannagat, J. Organomet. Chem., 1965, 3, 113-120.
12 (a) H. Schumann, J. Gottfriedsen, S. Dechert and F. Girgsdies, Z. Anorg. Allg. Chem., 2000, 626, 747-758; (b) Y. Tang, A. M. Félix, B. J. Boro, L. N. Zakharov, A. L. Rheingold and R. A. Kemp, Polyhedron, 2005, 24, 1093-1100.
13 A boat conformation of the ring would place the $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ in an eclipsed position.
14 (a) A. J. Canty and G. B. Deacon, Inorg. Chim. Acta, 1980, 45, L225-L227; (b) P. Pyykkö and M. Straka, Phys. Chem. Chem. Phys., 2000, 2, 2489-2493.
15 P. Pyykkö, Chem. Rev., 1997, 97, 597-636.
16 A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
17 (a) P. Pyykkö and F. Mendizabal, Inorg. Chem., 1998, 37, 3018-3025; (b) C. M. Che and S. W. Lai, Coord. Chem. Rev., 2005, 249, 1296-1309.
18 (a) R. Villanneau, A. Proust, F. Robert and P. Gouzerh, Chem. Commun., 1998, 1491-1492; (b) S.-M. Chen, C.-Z. Lu, Y.-Q. Yu, Q.-Z. Zhang and X. He, Inorg. Chem. Commun., 2004, 7, 1041-1044; (c) H. Abbas, A. L. Pickering, D.-L. Long, P. Kögerler and L. Cronin, Chem.-Eur. J., 2005, 11, 1071-1078; (d) C. Streb, C. Ritchie, D.-L. Long, P. Kögerler and L. Cronin, Angew. Chem., Int. Ed., 2007, 46, 7579-7582.

[^0]: Departamento de Química Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares-Madrid, Spain.E-mail: carlos.yelamos@uah.es; Fax: + 3491 8854683; Tel: + 34918854898
 \dagger Electronic supplementary information (ESI) available: Experimental details and full characterization data for complexes 2-6. CCDC 699910-699912. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b814982h

